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Abstract 

Background This study aims to evaluate the optimal ratio of synthetic bone graft (SBG) material and platelet rich 
fibrin (PRF) mixed in a metal 3D‑printed implant to enhance bone regeneration.

Methods Specialized titanium hollow implants (5 mm in diameter and 6 mm in height for rabbit; 6 mm in diameter 
and 5 mm in height for pig) were designed and manufactured using 3D printing technology. The implants were 
divided into three groups and filled with different bone graft combinations, namely (1) SBG alone; (2) PRF to SBG 
in 1:1 ratio; (3) PRF to SBG in 2:1 ratio. These three groups were replicated tightly into each bone defect in distal 
femurs of rabbits (nine implants, n = 3) and femoral shafts of pigs (fifteen implants, n = 5). Animal tissue sections 
were obtained after euthanasia at the 8th postoperative week. The rabbit specimens were stained with analine blue, 
while the pig specimens were stained with Masson–Goldner’s trichrome stain to perform histologically examination. 
All titanium hollow implants were well anchored, except in fracture specimens (three in the rabbit and one fracture 
in the pig).

Result Rabbit specimens under analine blue staining showed that collagen tissue increased by about 20% and 40% 
in the 1:1 ratio group and the 2:1 ratio group, respectively. Masson–Goldner’s trichrome stain results showed that new 
bone growth increased by 32% in the 1:1 ratio PRF to SBG, while − 8% in the 2:1 ratio group.

Conclusion This study demonstrated that placing a 1:1 ratio combination of PRF and SBG in a stabilized titanium 3D 
printed implant resulted in an optimal increase in bone growth.
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Background
Recently, advancements in technology have enabled the 
successful manufacturing of patient-specific (custom) 
metal implants with intricate, custom shapes for clinical 
surgery by integrating computed tomography (CT) image 
reconstruction, computer-aided design (CAD), and metal 
3D additive manufacturing (commonly referred to as 
3D printing). However, the production of large custom 
implants often leads to challenges such as bone ingrowth 
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at the metal interface, inadequate implant strength, 
excessive weight, and induces stress shielding [1–6].

To address these challenges, large custom or geomet-
rically complex metal 3D-printed implants can undergo 
structural lightweight design during the design stage 
using topological optimization methods. Structural 
optimization accompanied hollow spaces within the 
implant and synthetic or autologous bone grafts can be 
considered to fill in these spaces to enhances the defect 
reconstruction and promotes stronger bonding with sur-
rounding bone, ensuring long-term stability after surgery. 
However, no study has confirmed bone growth efficacy 
and feasibility between synthetic bone grafts (SBGs) and 
metal 3D-printed implant.

SBGs are commonly used in orthopedic surgeries to fill 
up bone defects [7–11]. It provides an osteoconductive 
effect and is relatively inexpensive. However, the pow-
der or cubic form of the commercialized synthetic bone 
grafts, which has a large porous architecture, cannot fill 
up the bone defect/internal space of implant tightly. The 
loose filling space between the bone graft and the defect/
internal implant surfaces could lead to delayed union or 
non-union [7–11]. Due to the chemical nature of metal-
lic salts, SBGs have been reported to dissolve faster than 
the bone defect recovery [7–14]. Serious biomechanical 
problems, such as bone cracks or fracture can easily arise 
under unfavorable stress in the bone defect area due to 
the non-integrity structure.

Platelet rich fibrin (PRF) is the second-generation 
platelet rich concentration. It contains a high amount of 
growth factors, including platelet-derived growth fac-
tor (PDGF), vascular endothelial growth factor (VEGF) 
and transformation growth factor beta (TGF-β). PRF 
has already been proven to improve wound healing and 
enhance tissue regeneration [15, 16]. The jellylike PRF 
can be mixed with bone graft material to become con-
centrated growth factor enriched bone graft matrix, also 
known as sticky bone [17, 18]. This adds the viscosity 
characteristic to the bone graft, which eases the manipu-
lation of bone grafts during surgery and fills bone defects 
completely. The polymerized PRF matrix prevents early 
synthetic bone graft resorption [19]. Therefore, sticky 
bone is ideal for securely filling irregular traumatic bone 
defect cavities and internal space of the 3D-printed 
implant. The sticky bone system has already been applied 
with dental implants, and has proven to improve bone 
growth and clinical outcome [20–22]. However, it is still 
unknown how the mixing ratio of SBG material and PRF 
can promote good bone regeneration.

When putty-like sticky bone was considered to fill 
into hollow space within a large metal 3D-printed 
implant, the implant surface needed to design with 
window patterns that can allow convenient placement 

of the filling materials inside the device during surgery. 
The aim of this study is to evaluate bone graft pack-
ing effect, bone ingrowth feasibility and interaction 
for the PRF composite mixed with different ratio of 
SBGs (different sticky bone) filled into a relatively small 
scale hallow titanium 3D-printed implant using in vivo 
implantation experiments on rabbits and pigs.

Methods
3D‑printed implant design and manufacture
Under the intention of preventing sticky bone loss 
inside the marrow cavity and the fact that bone heal-
ing takes place mainly around the cortical bone level, a 
confining cylinder type implant was designed through 
computer-aided-design software (PTC Creo, V6.0, PTC 
Inc., Needham, MA, USA) (Fig.  1). This implant can 
hold the sticky bone together and be inserted laterally 
into a rabbit femur condyle or pig femur. The bottom 
of the cylinder was solid to provide a supporting base. 
The outer wall surface was a 2  mm square lattice to 
expose the sticky bone to the patient’s tissue (Fig. 2A). 
The diameter and height of the cylinder for the rabbit 
specification was 5  mm and 6  mm, respectively, while 
it was changed to 6 mm and 5 mm for the pig specifica-
tion. The implant was then fabricated using a metal 3D 
printer (AM400, Renishaw, Gloucestershire, UK) with 
titanium alloy powder (Ti6Al4V powder with average 
grain size of 30 μm) (Fig. 2B). The titanium powder was 
selectively scanned and melted by the laser, to form the 
implant. All Implants were removed from the substrate 
plate and etched using acid to eliminate residual sand-
blast particles. Implants were then rinsed with distilled 
water and cleaned using ultrasonic oscillations before 
autoclaving.

Fig. 1 Illustration of 3D‑printed implant to prevent bone graft 
from falling into medullary cavity. A without implant B with implant
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PRF and sticky bone production
Rabbit and pig target animal venous blood were drawn 
into a 10  ml plastic serum tube (BD, Vacutainer Plus, 
Franklin lakes, New Jersey, US) (Fig. 3A). The blood sam-
ples were then centrifuged immediately with a compact 
table top centrifuge (KUBOTA, S300T, Osaka, Japan) 
under the condition of 2700 rpm for 10 min. The resulted 
PRF clot was taken out using a surgical tweezer (Fig. 3B). 
The bottom RBC (red blood cells) clot was cut and dis-
carded. The fibrin clot was then cut into fine pieces and 
mixed with the designated volume of bone graft material. 
Continuous mixture was performed until sticky bone for-
mation was completed and filled in the implant (Fig. 3C, 
D).

In vivo 3D‑printed implant with sticky bone implantation 
for rabbits
All in  vivo experimental procedures were performed 
using the protocols approved by the Institutional Ani-
mal Care and Use Committee of Master Laboratory 
Co., Ltd. (No.: 21T10-01). Besides, all procedures were 
conducted in compliance with the ARRIVE (Animal 
research: reporting of in  vivo experiments) guide-
lines, and all efforts were made to minimize the num-
ber of animals and induced pain. Nine female skeletally 
mature New Zealand rabbits weighing 3.54–3.98  kg 
(mean ± SD = 3.79 ± 0.17  kg) with average 24  weeks old 
were used to perform this animal study. Bone mineral 
density was not calculated because all subjects were 
young and at a similar age. The rabbit model was chosen 
due to easier accessibility of bone implantation sites, sur-
gical approach and post-processing analysis that can be 
used as a basis for larger animals.

The rabbit was fasted for 12  h prior to surgery. For 
sedation and anesthesia, zoletil-50 5 mg/kg (Zoletil, Vir-
bac, Carros, France), xylazine 2  mg/kg (Rompun, Bayer, 
Leverkusen, North Rhine-Westphalia, Germany), atro-
pine 0.03 mg/kg (Atropine, Nang Kuang Pharmaceutical 
Co., Ltd., Tainan, Taiwan) and ketoprofen 2 mg/kg (Keto-
profen, Nang Kuang Pharmaceutical Co., Ltd., Tainan, 
Taiwan) were given by intramuscular injection (IM). 
Intraoperative analgesia was kept with meloxicam 1 mg/
kg (Achefree, Swiss Pharmaceutical Co. Ltd, Tainan, 
Taiwan), subcutaneous injection if needed. After seda-
tion, venous blood was drawn from a marginal ear vein, 
and sticky bone was produced according to the previous 
description (Fig. 4A, B).

The rabbit was then put in the supine position, with 
a 2–3  cm skin incision made at the right hind knee 
area to reveal the femur bone lateral condyle. A 5 mm-
diameter hole was predrilled and a 3D printing implant 
5 mm diameter and 6 mm height was tightly implanted 
into the hole. The implant was then filled with three 
designated PRF mixed with SBGs (Bicera bone graft 
substitute–pore size: 300–600  μm, Wiltrom, Hsinchu, 
Taiwan), i.e. (1) only SBG; (2) PRF with SBG in 1:1 
ratio; (3) PRF with SBG in 2:1 ratio. Each combination 
was replicated in 3 different rabbits (n = 3) (Fig. 4A, B). 
Finally, the wound was closed in layers without a visible 
bleeding point. Topical antibiotic, penicillin 3000iu/kg 
(Penicillin G procaine, Ta Fong, Pharmaceutical Co., 
Ltd., Changhua, Taiwan), was applied prior to wound 
closure to control surgical site infection. Prophylactic 
antibiotics with enrofloxacin 5 mg/kg (BAYTRIL, Bayer, 
Leverkusen, North Rhine-Westphalia, Germany), was 

Fig. 2 A CAD model of 3D‑printed implant; B metal 3D‑printed implant measured by a caliper
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administered IM, QD for 5  days. Once analgesia was 
no longer required, the animals were monitored once 
daily. Surgical site X-ray images were taken at 4th and 
8th week after surgery. After 8 weeks, under deep gen-
eral anesthesia, the rabbits were euthanized with heart 
exsanguination. The right femur was removed and pre-
served in 4% formaldehyde solution.

In vivo 3D‑printed implant with sticky bone implantation 
for pigs
The in  vivo pig study was also reviewed and approved 
by the same committee of the IACUC (No.: 110040601). 
Four female skeletally mature Yorkshire pigs, weigh-
ing around 30  kg (Mean ± SD: 32.5 ± 2.78  kg) and aged 
3 months old on average, were used to perform this ani-
mal study. This pig model was chosen due to its similarity 

Fig. 3 Concept of both rabbits and pig in vivo tests. A flow chart of operation procedure, red and green dots on the femur indicate the drill sites 
on rabbits and pigs, respectively; B PRF result from animal blood; C sticky bone mixing step; D sticky bone operation in the in vivo test



Page 5 of 12Wong et al. Journal of Orthopaedic Surgery and Research          (2024) 19:299  

in bone quality, density, anatomy and size compared with 
the human femur. Pig femurs were also lower in variabil-
ity and cost. Bone mineral density was also not calculated 
in this study because all pigs were young and at the same 
age (3 months ± 1 week).

The pigs were also fasted for 12  h prior to surgery. 
The zoletil-50 5  mg/kg, xylazine 1  mg/kg, and atro-
pine 0.03  mg/kg were given by IM for sedation and 
anesthesia. Anesthesia was maintained with 3% isoflu-
rane (Attane, Panion & BF biotech, Taipei Taiwan) in 
endotracheal inhalation with oxygen 2  L/min. After 
sedation, venous blood was drawn from the subcla-
vian vein, and sticky bone was produced as mentioned 
above. The pig was then placed in the lateral position. 
The skin was disinfected with Povidone-iodine. Two 
3–4  cm skin incisions were made at the bilateral hind 
limbs, respectively. Superficial muscles were separated 

properly with bleeding control. The femur bone shaft 
was then revealed (Fig. 4C, D).

Two implants were implanted into two corresponding 
6 mm predrilled holes on each hind limb without over-
lapping and falling into the marrow cavity. The same 
three combinations of PRF mixed with synthetic bone 
graft, i.e. only SBG, PRF with SBG in 1:1 ratio and PRF 
with SBG in 2:1 ratio was then filled into the implants. 
Each combination was replicated at least 5 times (n = 5) 
and scattered randomly among all drilled holes (there 
were totally 16 holes) to eliminate the within-combi-
nation variance (Fig. 4C, D). The same wound care and 
X-ray images were taken at the same time point as the 
rabbits after surgery. After 8  weeks the pigs were sac-
rificed and bilateral femur bones were removed and 
preserved in 4% formaldehyde solution for further 
processing.

Fig. 4 In vivo test implantation results: A the metal implant in rabbits; B the sticky bone filled in rabbits; C the metal implant in pigs; D the sticky 
bone filled in pigs
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Histomorphometrical evaluation
Each implant and its surrounding hard tissue were sec-
tioned and dehydrated in a graded series of alcohol (20–
40–60–80–100%). The sample was then embedded and 
sliced paralleled to the cortical bone level (Fig.  5). Each 
section was taken every 1.5  mm (included cutter thick-
ness) to ensure complete histological presentation and 
each specimen can be cut up to three slices (Fig. 5). The 
section above and below marked level were covered with 
fibrous tissue and metallic bottom of implant, respec-
tively. Therefore, these two sections have no presenta-
tional significance. After attachment to glass slides the 
samples were finely ground to the desired thickness for 
histochemical staining.

The rabbit ground bone sample was only stained in 
blue using analine blue solution to identify tissue heal-
ing inside the basket implant. The pig bone sample was 
stained using Masson–Goldner’s trichrome stain (Mas-
son–Goldner staining kit, Merck & Co, Kenilworth, New 
Jersey, US) to identify different types of healing tissue 
inside the basket implant.

After staining, all slides were rinsed with 70%, 90%, 
then 100% alcohol, and properly sealed for photograph-
ing. Images were taken under 12.5× magnifications and 
analyzed using image processing software (ImageJ 1.53a 
for MacOS, National Institutes of Health, USA). A cylin-
drical cut area was selected in each sample. The unnec-
essary areas were cut away and removed. The black area 
found under light microscope was represented the metal 

material of the 3D-printed hollow implant. The blue area 
for the rabbit and red/yellow/green area for pig were rep-
resented soft/hard tissue cell ingrowth. Therefore, target 
colors’ (blue/red/yellow/green) areas were selected using 
hue adjustment in the color threshold function and area 
ratios of various target colors to black deductions were 
calculated. The blue area ratio for rabbit and green area 
ratio for pig of the SGB group were then treated as the 
control group to calculate the relative percentages of dif-
ferent combinations of PRF for bone ingrowth efficiency.

Results
The body weights of both animal models were recorded, 
and no drastic variation was found before sacrificing. No 
surgical wound infection or other complications were 
found at the 8th week. All animals were euthanized as 
scheduled. The represented x rays of intact and frac-
tured rabbit and pig bones are shown in Tables 1 and 2, 
respectively. As the X-ray images show, three fractures 
were found among the nine rabbit bones and one fracture 
was found in each of the three different PRF combination 
groups (SBG, PRF:SBG = 1:1 and PRF:SBG = 2:1). Only 
one fracture was found in the pure synthetic bone graft 
group in the pig test.

In the rabbit histomorphometrical evaluation, blue 
color indicating the amount of collagen-tissue and 
bone growth (Fig.  6). Percentage ratios of blue color 
to black deduction areas were 52.73%, 63.09% and 
73.80% for SBG, PRF:SBG = 1:1 and PRF:SBG = 2:1 

Fig. 5 Indication of sectioning in hard tissue histology. Section level was determined right below the cortical bone level
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groups, respectively (Table  3). This result indicated that 
SBG mixed with higher PRF ratios presented relative 
higher percentage of collagen-tissue/bone growth. The 

increased percentage were found 19.65% (about 20%) and 
39.95% (about 40%) for PRF with SBG in 1:1 and 2:1 ratio, 
respectively (Table 3).

Table 1 Record of in vivo rabbit test, experimental conditions and representative X rays

Condi�on No fracture Fracture

Pure SBG

On behalf of
rabbit number 

01 03

PRF : SBG = 1:1

On behalf of
rabbit number 

09 04

PRF : SBG = 2:1

On behalf of
rabbit number

06 08
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Table 2 Record of in vivo pig test, experimental conditions and representative X rays

Condi�on No fracture Fracture

Pure SBG

On behalf of
pig number 

04 02

PRF : SBG = 1:1

On behalf of
pig number 

01 N/A

PRF : SBG = 2:1

On behalf of
pig number 

03 N/A
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We applied the Masson–Goldner’s trichrome stain 
for the pig test and found by which the cancellous bone 
was stained in green, the muscle-related tissue (outer-
periosteum) was stained in red, and the erythrophilic 

leukocytes were stained in yellow (Fig. 7). Therefore, the 
expected results showed bone growth trend in pigs was 
different from that in rabbits. The increased percent-
ages of bone growth were 32.13% for PRF with SBG in 
1:1 combination and − 8.4% for the 2:1 group when com-
pared to the pure SBG (Table 4).

Discussion
The SBG is a variety of bone substitutes are used in 
orthopedic operations. In this study, we adapted Bicera as 
a representative SBG because it is one of the most com-
monly used bone substitute material [23]. Furthermore, 
it is available in powder and can be access conveniently. 
The chemical components of Bicera are hydroxyapa-
tite (60%) and ß-tricalcium phosphate (40%), both com-
pounds were widely used as SBGs [24, 25]. The porous 
structure of Bicera can provide better adhering sites for 

Fig. 6 Histology of the rabbit in vivo test, staining with analine blue. Blue color indicating collagen (including bone matrix, smooth muscle 
and fibrous tissue). Conditions: A SBG only; B PRF with SBG in 1:1; C PRF with SBG in 2:1

Table 3 Histology analysis of in vivo test of rabbit. Data are 
mean value

Condition Blue area Calculated 
efficiency

Calculation Blue color area/(Total 
area − Black area) (%)

Target 
combination/
SBG % (%)

SBG 52.73 100

PRF with SBG in 1:1 63.09 119.65

PRF with SBG in 2:1 73.80 139.95

Fig. 7 Histology of the pig in vivo test, staining with Masson–Goldner’s trichrome stain. Connective tissue (bone tissue) stained green, muscle 
tissue stained red, erythrocyte stained yellow. Conditions: A SBG only; B PRF with SBG in 1:1; C PRF with SBG in 2:1
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PRF in forming sticky bone [26]. These features can both 
be found in many commercialized synthetic bone grafts. 
Therefore, the role of Bicera in this study can be replaced 
by other bone graft materials that possess similar chemi-
cal components and physical characteristics. The role 
of SBG material can be further replaced by autologous 
bone grafts, which is more ideal in promoting bone heal-
ing [27]. In the dental implanting procedure, autologous 
bone grafts can be obtained during the bone drilling 
process. Dentistry cases report on sticky bone mixed 
with autologous bone graft material with PRF [28]. This 
combination may be adapted to our implanting system in 
future studies.

Specific bioactive additives, such as PRP, PRGF, PRF 
techniques have been found to promote the capability 
to accelerate wound healing, regulate inflammation, and 
improve soft and hard tissue regeneration [29–36]. The 
advantages of these bioactive additives are its autologous 
nature, simple collection, ease of chair-side preparation, 
and simple clinical application without the risks associ-
ated with allogeneic or animal derived products. Com-
pared to the PRP, the PRF exists advantages with greater 
simplicity of production, absence of blood manipulation, 
no additives, contains more healing factors and more 
stem cells, less trauma. The biological properties of PRF 
clearly show an interesting surgical versatility and all the 
characteristics that can support faster tissue regeneration 
and high-quality clinical outcomes. The PRF is able to 
stimulate osteogenesis in bone environment, in addition 
to angiogenesis [31–34]. The pictures in Fig. 3B–D dem-
onstrate successful PRF and sticky bone production for 
the rabbits and pigs. Although reports exist on achieving 
PRF and sticky bone production for other types of ani-
mals [37, 38], the ideal PRF and synthetic bone graft ratio 
has not yet been tested.

Theoretically, higher growth factor concentration 
should result in faster tissue growth, according to growth 
factor physiology. Therefore, we tested the sticky bone 
combination (PRF:SBG) in 2:1 and 1:1 ratio in the rab-
bit in  vivo test. This test determined whether the PRF, 
synthetic SBG and metallic holow implant combination 
could provide a positive effect in bone healing. The result 

in Table 3 indicates the positive effect from the addition 
of PRF and a proportional relation between the collagen-
tissue and growth. When compared to the SBG group 
alone, the collagen growth (including bone and soft tis-
sue) was enhanced about 20% at 1:1 ratio while as high as 
40% enhancement was noted from the 2:1 ratio. However, 
different types of collagen would be secreted by fibro-
blasts, osteoblasts, and other inflammatory cells in the 
bone healing process. With analine blue used in rabbit 
tests to bind collagen in the bone matrix, smooth mus-
cle and fibrous tissue, this result is prone to misjudgment. 
The blue dye area within the basket implant could be eas-
ily misunderstood as the amount of new bone growth.

Based on the rabbit in vivo test, we designed a subse-
quent test using Yorkshire pigs with larger bone size to 
expand the sample size (n = 5). Moreover, we adapted 
another histochemical stain the Masson–Goldner’s tri-
chrome staining to identify differentiated tissue growing 
inside the hollow implant [39]. Under trichrome stain-
ing, small blood vessels were marked with red color, and 
found around the implant site under light microscopy, as 
shown in Fig. 7. The neovascularization is part of wound 
healing and can be enhanced by VEGF, PDGF and other 
factors inside PRF. Accordingly the percentage of red area 
is proportional to the PRF ratio, coupled with a decrease 
in the percentage of green area. Otherwise, leukocytes 
(white blood cells) stained with yellow color were found 
surrounding the new-grown bone tissue and the resid-
ual synthetic bone graft. This co-staining phenomenon 
indicated synthetic bone graft degradation, which was 
reported to attract erythrophilic leukocytes [25]. Newly 
formed lamellar bone by which was stained in green 
within the implants.

This finding indicated that PRF growth factors could 
favor in enhancing fibro epithelial tissue growth rather 
than bone tissue in higher concentrations. Therefore, we 
are able to explain the discordant results between the 
rabbit and pig tests. Since analine blue could bind to col-
lagen in the bone matrix, smooth muscle and fibrous tis-
sue, the higher percentage of blue area in the 2:1 group 
might represent higher vessel growth in rabbit testing. 
After differentiating muscle tissue from bone tissue using 

Table 4 Histology analysis of in vivo pig test

Calculation Target color area/(Total area − Black area) Target combination (Green color) /SBG %

Condition Red area Yellow area Green area Calculated efficiency 
(% of bone growth) 
(%)

SBG 39.30% (± 19.2%) 32.00% (± 15.4%) 25.41% (± 22.1%) 100

PRF with SBG in 1:1 22.57% (± 13.2%) 42.87% (± 6.1%) 33.58% (± 10.3%) 132.13

PRF with SBG in 2:1 37.32% (± 12.7%) 37.99% (± 17.3%) 23.28% (± 8.1%) 91.60
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trichrome staining, we can conclude that sticky bone 
with 1:1 portion of PRF and synthetic bone graft pro-
vided better bone healing effect in the pig test.

The titanium 3D printing basket implants with outer 
surface lattices were used as a confining boundary to 
support the sticky bone structure stability before bone 
union. Despite femur bone fractures in three rabbits and 
one pig, the titanium baskets in all test subjects, includ-
ing those with fractures, remained intact under X ray at 
the 4th and 8th weeks. This proves that the titanium bas-
ket implant was stable and strong enough to withstand 
the test. However, larger defects reconstructed with spe-
cific 3D printing implants may require plate-and-screw 
fixation to enhance the structural strength to ensure 
bone union in future studies [3, 40]. Bicera was chosen 
as the representative SBG in this study. Other types of 
bone grafts such as autograft, allograft or other commer-
cial products with different components might have dif-
ferent results. In our study, due to the small size of the 
implanted SBG, it was not easy to measure the accurate 
absorption rate. However, it can be estimated from his-
tological sections. Since the Bicera we used is opaque, we 
could measure the black area to estimate the remaining 
SBG. In PRF with SBG 1:1 group of the pig experiment, 
each sample resulted in around 4.6   mm2 of black area 
(excluded metal bracket area), however, area occupied by 
SBG accounts for only half of the total area (28.26  mm2). 
Therefore, the proportion of SBG that still exists should 
be about 33% (4.6  mm2/14.13  mm2). Through such calcu-
lation we can probably estimate the resorption rate was 
around 67%. Our study is a single cross section histo-
morphometrical evaluation. Serial histomorphometrical 
healing process evaluations were not included.

Conclusion
This study successfully applied Masson’s Goldner tri-
chrome stain to indicate that equal parts of PRF and SBG 
mixtures (1:1) in the titanium 3D printed hollow implant 
can obtain the best increased bone growth of 32.13% in 
the pig graft experiment.
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